Learning of Automata Models Extended with Data

نویسنده

  • Bengt Jonsson
چکیده

One of the challenges in the Connect project is to develop techniques for learning models of networked components from exploratory interaction with the component, based on analyzing messages exchanged between the component and its environment. Many approaches to this problem employ regular inference (aka. automata learning) techniques which generate modest-size finite-state models. Most communication with real-life systems involves data values being relevant to the communication context and thus influencing the observable behavior of the communication endpoints. When applying methods from the realm of automata learning, it is desirable to handle such dataoccurrences. It is therefore important to extend inference techniques to handle message alphabets and state-spaces with structures containing data parameters, often with large domains. After very briefly mentioning several approaches to the problem, we give a longer account of an approach proposed by Aarts et al, which adapts ideas from of predicate abstraction, successfully used in formal verification. We illustrate the techniques by application to a simple running example, which models a simple booking service. Acknowledgment This paper builds on joint work with several present and former collaborators, including Fides Aarts, Therese Bohlin, Sofia Cassel, Olga Grinchtein, Falk Howar, Maik Merten, Bernhard Steffen, Johan Uijen, and Frits Vaandrager. Mistakes and inconsistencies are caused by the author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Region Directed Diffusion in Sensor Network Using Learning Automata:RDDLA

One of the main challenges in wireless sensor network is energy problem and life cycle of nodes in networks. Several methods can be used for increasing life cycle of nodes. One of these methods is load balancing in nodes while transmitting data from source to destination. Directed diffusion algorithm is one of declared methods in wireless sensor networks which is data-oriented algorithm. Direct...

متن کامل

Region Directed Diffusion in Sensor Network Using Learning Automata:RDDLA

One of the main challenges in wireless sensor network is energy problem and life cycle of nodes in networks. Several methods can be used for increasing life cycle of nodes. One of these methods is load balancing in nodes while transmitting data from source to destination. Directed diffusion algorithm is one of declared methods in wireless sensor networks which is data-oriented algorithm. Direct...

متن کامل

Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining

The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Using an Evaluator Fixed Structure Learning Automata in Sampling of Social Networks

Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire networ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011